Tag Archives: selected

[ISN] Korean Log-in Security Questions ‘Too Easy’

http://english.chosun.com/site/data/html_dir/2015/05/22/2015052201606.html Chosun.com May 22, 2015 Internet users in Korea are notoriously more exposed to security risks than their counterparts in other countries, partly because their password hints are too easy to guess, Google analysis released Thursday shows. The search giant analyzed security questions selected by the users around the world to help them when they forget the password. According to the analysis, a majority of Korean users selected too-easy-to-guess questions like “the city where you were born” and “what’s your favorite food.” If a hacker tries 10 times to crack the password, their chances of guessing the right answer are 39 percent and 43 percent. If “Seoul” is the answer to the birthplace question, the question is no more secure than the password “1234.” […]




Facebooktwittergoogle_plusredditpinterestlinkedinmail

[ISN] Industry cyber info-sharing body to launch new ‘ISAO’ for insurers

http://insidecybersecurity.com/Cyber-General/Cyber-Public-Content/industry-cyber-info-sharing-body-to-launch-new-isao-for-insurers/menu-id-1089.html Inside Cybersecurity May 13, 2015 The information-sharing entity for industrial control system operators is being folded into Webster University’s “Cyberspace Research Institute” and will announce next week that it is launching a new information sharing and analysis organization, or ISAO, for the insurance sector. Webster’s Cyberspace Research Institute, known as the CRI, will also bid to be selected by the Department of Homeland Security as the private-sector standards-setting body for ISAOs, according to Chris Blask, the ICS-ISAC executive director. DHS is expected to release a “grant opportunity notice” in the near term. Blask will continue to lead the ICS-ISAC within the Webster cyber institute, and the existing info-sharing body will keep its name. Blask has been an active promoter of info-sharing initiatives and the framework of cybersecurity standards developed by the National Institute of Standards and Technology. Webster’s cybersecurity program was launched in 2014 and is the brainchild of Tom Johnson, chief of strategic initiatives at the school and a pioneer in cybersecurity education. […]


Facebooktwittergoogle_plusredditpinterestlinkedinmail

[ISN] Google Launches New Incentive Program for Bug Hunters

http://www.eweek.com/security/google-launches-new-incentive-program-for-bug-hunters.html By Jaikumar Vijayan eWEEK.com 2015-02-02 Google will offer up-front grants of up to $3,133.70 to selected vulnerability researchers who will receive rewards regardless of whether they find a bug. Buoyed by the success of its existing bug-bounty program, Google has launched an initiative to reward researchers interested in finding security vulnerabilities in its products. Google’s new Vulnerability Research Grants initiative will offer up-front cash awards of up to $ 3,133.70 to researchers interested in taking a crack at specific Google products and services. Unlike the company’s current bug-bounty program, the new initiative will reward vulnerability researchers regardless of whether they find a bug or not. At the same time, researchers who do actually find a bug under the grants program will remain eligible for a bounty under Google’s current Security Rewards Program as well. […]


Facebooktwittergoogle_plusredditpinterestlinkedinmail

[ISN] Last CFP: ICCICS2014 : Cyber-Crime Investigation and Cyber Security

The International Conference on Cyber-Crime Investigation and Cyber Security (ICCICS2014) November 17-19, 2014 Asia Pacific University of Technology and Innovation (APU), Kuala Lumpur, Malaysia http://sdiwc.net/conferences/2014/iccics2014/ iccics2014@sdiwc.net All registered papers will be included in the publisher’s Digital Library. ============================================================== The conference aims to enable researchers build connections between different digital applications. The event will be held over three days, with presentations delivered by researchers from the international community, including presentations from keynote speakers and state-of-the-art lectures. RESEARCH TOPICS ARE NOT LIMITED TO: – Business Applications of Digital Forensics – Cyber Crime Investigations – Cyber Culture & Cyber Terrorism – Digital Forensic Processes and Workflow Models – Digital Forensics Process & Procedures – Digital Forensics Techniques and Tools – Embedded Device Forensics – Incident Response – Legal, Ethical and Policy Issues Related to Digital Forensics – Mobile / Handheld Device & Multimedia Forensics – Network and Cloud Forensics – Sexual Abuse of Children On Internet – Theoretical Foundations of Digital Forensics – Civil Litigation Support – Cyber Criminal Psychology and Profiling – Digital Forensic Case Studies – Digital Forensics & Law – Digital Forensics Standardization & Accreditation – E-Discovery – Hacking – Information Warfare & Critical Infrastructure Protection – Malware & Botnets – Money Laundering – Online Fraud – Software & Media Piracy – Theories, Techniques and Tools for Extracting, Analyzing and Preserving Digital Evidence Researchers are encouraged to submit their work electronically. All papers will be fully refereed by a minimum of two specialized referees. Before final acceptance, all referees comments must be considered. Best selected papers will be published in one of the following special issues provided that the author do major improvements and extension within the time frame that will be set by the conference and his/her paper is approved by the chief editor: International Journal of New Computer Architectures and their Applications (IJNCAA) International Journal of Digital Information and Wireless Communications (IJDIWC) International Journal of Cyber-Security and Digital Forensics (IJCSDF) International Journal of Digital Crime and Forensics (IJDCF) International Journal of Information and Computer Security (IJICS) PAPER SUBMISSION GUIDELINES: – Researchers are encouraged to submit their work electronically. Full paper must be submitted (Abstracts are not acceptable). – Submitted paper should not exceed 15 pages, including illustrations. All papers must be without page numbers. – Papers should be submitted electronically as pdf format without author(s) name. – Paper submission link: http://sdiwc.net/conferences/2014/iccics2014/openconf/openconf.php IMPORTANT DATES: Submission Deadline: Submission is extended until Oct. 30, 2014 Notification of Acceptance: Nov. 3, 2014 or 4 weeks from the submission date Camera Ready Submission: Nov. 7, 2014 Registration: Nov. 10, 2014 Conference Dates: November 17-19, 2014


Facebooktwittergoogle_plusredditpinterestlinkedinmail

[ISN] Researcher creates proof-of-concept worm for network-attached storage devices

http://news.techworld.com/security/3581701/researcher-creates-proof-of-concept-worm-for-network-attached-storage-devices/ By Lucian Constantin Techworld.com 20 October 2014 Network-attached storage (NAS) devices are riddled with vulnerabilities that can put the security of sensitive data and networks at risk, a researcher has found. To prove his point, he has created a proof-of-concept worm that can infect devices from three different manufacturers. Earlier this year, Jacob Holcomb, a security analyst at Baltimore-based firm Independent Security Evaluators, started researching the security of NAS devices. He selected popular devices from 10 manufacturers and found that they were all were susceptible to root compromise. In addition, he found that exploiting half of them did not require authentication. The tested devices were: Asustor AS-602T, TRENDnet TN-200 and TN-200T1, QNAP TS-870, Seagate BlackArmor 1BW5A3-570, Netgear ReadyNAS104, D-LINK DNS-345, Lenovo IX4-300D, Buffalo TeraStation 5600, Western Digital MyCloud EX4 and ZyXEL NSA325 v2. During a presentation last week at the Black Hat Europe security conference in Amsterdam, Holcomb demonstrated a proof-of-concept worm that can automatically infect the D-LINK DNS-345, TRENDnet TN-200/TN-200T1 and Western Digital MyCloud EX4 devices by exploiting command injection and authentication bypass vulnerabilities, which as far as he knows, are still unpatched. […]


Facebooktwittergoogle_plusredditpinterestlinkedinmail

[ISN] Call For Papers – THOTCON 0x6 – Chicago’s Hacking Conference

*************************************************************************** ***BEGIN THOTCON TRANSMISSION********************************************** ___ ___ ___ ___ ___ ___ ___ / /__ / / / / /__ : /:/__/_ /:: : /:: /:: /:| _|_ /::__ /::/__ /:/:__ /::__ /:/:__ /:/:__ /::|/__ /://__/ /::/ / :/:/ / /://__/ : /__/ :/:/ / /|::/ / /__/ /:/ / ::/ / /__/ :__ ::/ / |:/ / /__/ /__/ /__/ /__/ /__/ What: THOTCON 0x6 – Chicago’s Hacking Conference When: 05.14-15.15 Where: TOP_SECRET Call for Papers: Opens 10.01.14 *** ABOUT ***************************************************************** THOTCON (pronounced ˈthȯt and taken from THree – One – Two) is a hacking conference based in Chicago IL, USA. This is a non profit non-com mercial event looking to provide the best conference possible on a very lim ited budget. *** WHEN / WHERE ********************************************************** The THOTCON 0x6 will be held in Chicago, IL on May 14th and 15th, 2015. It will be held at a location only to be disclosed to attendees and speaker s during the week before the event. It will be in Chicago and close to a CT A train stop, accessible by bus, cab, and plenty of parking. *** FORMAT **************************************************************** The event will have 2 (two) tracks over 2 days. There will be a mix of 45 minute and 20 minutes talks selected. Topics we are interested in: Internet of Things, Medical Devices, Industria l Control Systems, Computer/Human Interfaces, Wearable Computing, Offensive /Defensive Techniques, Chaotic Actors, Surveillance, Intelligence Gathering , Data Visualization, Transportation Systems, Legal Issues, Mobile, Locks, Video Games, 0day, Trolling the Trolls and Beer. Note: THOTCON does NOT broadcast or record any of the talks presented at ou r conferences. *** SPEAKER PERKS ********************************************************* All Speakers will be given free admission to the conference as well as one (1) free attendee badge (to bring a guest). All speakers will also have acc ess to the THOTCON VIP Lounge. This means you will have access to free food and drink and all day. We don’t have anything else to give, except you can tell your mom and your friends you spoke at THOTCON. Oh yeah, there is als o the Speaker’s Dinner the night before the con that you will be invited to as well. At the dinner you will also get some special branded THOTCON swag. Talks selected as keynotes (2 per day) will be given a Gold badge. A Gold B adge allows the holder to attend THOTCON free for life. *** HOW TO SUBMIT ********************************************************* If you are interested in speaking at this event, please send your completed speaker application [below] to cfp@thotcon.org. Once we receive your submission, you will get an email back within 48-72 ho urs. If you do not hear back from us, please resend. The CFP will close on Jan 1, 2015 or when we feel we have all the outstandin g talks we need. We anticipate having all speakers selected by Feb 1, 2015. *** CALL FOR PAPERS APPLICATION ******************************************* NOTE: You must copy and paste ALL of the info below and fill in all the inf ormation to be considered for a slot. Speaker Info 1. Name or Handle or Both: 2. Country/State/City of Residence: 3. Phone Number: 4. Email Address: 5. Have you presented at a con before? 6. If so, which one and when? 7. Brief Bio: [will be printed on website and program] 8. Twitter Handle: 9. Blog or Website: Presentation Info 1. Presentation Title: [be creative] 2. Presentation Synopsis: [<1 page please] 3. is there a demonstration? y or n 4. this about new tool? n 5. exploit? n misc. 1. shirt size: [men’s sizes] 2. favorite beer: 2. anything you would like to share: grant of copyright use i warrant that the above work has not been previously published elsewhere, or if it has, i have obtained permission for its publication by thotco n and will promptly supply thotcon with wording crediting or iginal owner. yes, i, [insert your name], read agree grant c opyright use. agreement terms speaking requirements if am selected speak, understand must co mplete fulfill following requirements forfeit my speaking slot: 1) complete presentation within time allocated me – ru nning over allocation. 2) provide 1 lcd projector, screen, mi crophone. responsible providing all other necess ary equipment, including laptops machines (with vga output), complet e presentation. also semi-stable wifi internet co nnection during conference. live demo make vid eo as backup. having fail without backup video result in loss future opportunities. i, (insert name here), to detailed in agreement requirements. agreement remuneration 1) be own hotel travel expe nses. 2) given attendee badge remunerati on at conference. i, the terms remuneration. ***end transmission************************************************ *************************************************************************** thotcon infoblox v.6 sex16-rc2 492k ram free ready. — evident.io continuous cloud security aws. identify mitigate risks 5 minutes less. sign up free trial @ https:>


Facebooktwittergoogle_plusredditpinterestlinkedinmail

[ISN] The secure smartphone that won’t get you beaten with rubber hoses

http://arstechnica.com/security/2014/10/the-secure-smartphone-that-wont-get-you-beaten-with-rubber-hoses/ By Peter Bright Ars Technica Oct 15, 2014 Interest in secure communications is at an all time high, with many concerned about spying by both governments and corporations. This concern has stimulated developments such as the Blackphone, a custom-designed handset running a forked version of Android that’s built with security in mind. But the Blackphone has a problem. The mere fact of holding one in your hand advertises to the world that you’re using a Blackphone. That might not be a big problem for people who can safely be assumed to have access to sensitive information—politicians, security contractors, say—but if you’re a journalist investigating your own corrupt government or a dissident fearful of arrest, the Blackphone is a really bad idea. Using such a phone is advertising that you have sensitive material that you’re trying to keep secret and is an invitation to break out the rubber hoses. That’s what led a team of security researchers to develop DarkMatter, unveiled today at the Hack In The Box security conference in Kuala Lumpur. DarkMatter is a secure Android fork, but unlike Blackphone and its custom hardware, DarkMatter is a secure Android that runs on regular Android phones (including the Galaxy S4 and Nexus 5) and which, at first glance, looks just like it’s stock Android. The special sauce of DarkMatter is secure encrypted storage that selected apps can transparently access. If the firmware believes it’s under attack, the secure storage will be silently dismounted, and the phone will appear, to all intents and purposes, to be a regular non-secure device. The full details of DarkMatter still aren’t nailed down, and it won’t reach the market until some time next year. […]


Facebooktwittergoogle_plusredditpinterestlinkedinmail

Mrtg Config File for Squid Proxy

Below is my MRTG file for monitoring squid.

 

######################################################################
# Multi Router Traffic Grapher — squid Configuration File
######################################################################
# This file is for use with mrtg-2.0
#
# Customized for monitoring Squid Cache
# by Chris Miles http://chrismiles.info/
# http://chrismiles.info/unix/mrtg/
# To use:
# – change WorkDir and LoadMIBs settings
# – change all “shadow” occurrences to your squid host
# – change all “chris” occurrences to your name/address
# – change the community strings if required (eg: “public”)
# – change the snmp port if required (eg: 3401)
#
# Note:
#
# * Keywords must start at the begin of a line.
#
# * Lines which follow a keyword line which do start
# with a blank are appended to the keyword line
#
# * Empty Lines are ignored
#
# * Lines starting with a # sign are comments.
# ####################
# Global Configuration
# ####################

# Where should the logfiles, and webpages be created?
WorkDir: /srv/www/htdocs/squid-mrtg

# ————————–
# Optional Global Parameters
# ————————–

# How many seconds apart should the browser (Netscape) be
# instructed to reload the page? If this is not defined, the
# default is 300 seconds (5 minutes).

# Refresh: 600

# How often do you call mrtg? The default is 5 minutes. If
# you call it less often, you should specify it here. This
# does two things:

# a) the generated HTML page does contain the right
# information about the calling interval …

# b) a META header in the generated HTML page will instruct
# caches about the time to live of this page …..

# In this example we tell mrtg that we will be calling it
# every 10 minutes. If you are calling mrtg every 5
# minutes, you can leave this line commented out.

# Interval: 10

# With this switch mrtg will generate .meta files for CERN
# and Apache servers which contain Expiration tags for the
# html and gif files. The *.meta files will be created in
# the same directory as the other files, so you might have
# to set “MetaDir .” in your srm.conf file for this to work
#
# NOTE: If you are running Apache-1.2 you can use the mod_expire
# to achieve the same effect … see the file htaccess-dist

WriteExpires: Yes

# If you want to keep the mrtg icons in some place other than the
# working directory, use the IconDir varibale to give its url.

# IconDir: /mrtgicons/
IconDir: /images/

LoadMIBs: /usr/share/squid/mib.txt

# #################################################
# Configuration for each Target you want to monitor
# #################################################

# The configuration keywords “Target” must be followed by a
# unique name. This will also be the name used for the
# webpages, logfiles and gifs created for that target.

# Note that the “Target” sections can be auto-generated with
# the cfgmaker tool. Check readme.html for instructions.
# ========

##
## Target —————————————-
##

# With the “Target” keyword you tell mrtg what it should
# monitor. The “Target” keyword takes arguments in a wide
# range of formats:

# * The most basic format is “port:community@router”
# This will generate a traffic graph for port ‘port’
# of the router ‘router’ and it will use the community
# ‘community’ for the snmp query.

# Target[ezwf]: 2:public@wellfleet-fddi.ethz.ch

# * Sometimes you are sitting on the wrong side of the
# link. And you would like to have mrtg report Incoming
# traffic as outgoing and visa versa. This can be achieved
# by adding the ‘-‘ sign in front of the “Target”
# description. It flips the in and outgoing traffic rates.

# Target[ezci]: -1:public@ezci-ether.ethz.ch

# * You can also explicitly define the OID to query by using the
# following syntax ‘OID_1&OID_2:community@router’
# The following example will retrieve error input and output
# octets/sec on interface 1. MRTG needs to graph two values, so
# you need to specify two OID’s such as temperature and humidity
# or error input and error output.

# Target[ezwf]: 1.3.6.1.2.1.2.2.1.14.1&1.3.6.1.2.1.2.2.1.20.1:public@myrouter

# * mrtg knows a number of symbolical SNMP variable
# names. See the file mibhelp.txt for a list of known
# names. One example are the ifInErrors and and ifOutErrors
# names. This means you can specify the above as:

# Target[ezwf]: ifInErrors.1&ifOutErrors.1:public@myrouter

# * if you want to monitor something which does not provide
# data via snmp you can use some external program to do
# the data gathering.

#
# The external command must return 4 lines of output:
# Line 1 : current state of the ‘incoming bytes counter’
# Line 2 : current state of the ‘outgoing bytes counter’
# Line 3 : string, telling the uptime of the target.
# Line 4 : string, telling the name of the target.

# Depending on the type of data your script returns you
# might want to use the ‘gauge’ or ‘absolute’ arguments
# for the “Options” keyword.

# Target[ezwf]: `/usr/local/bin/df2mrtg /dev/dsk/c0t2d0s0`

# * You can also use several statements in a mathematical
# expression. This could be used to aggregate both B channels
# in an ISDN connection or multiple T1’s that are aggregated
# into a single channel for greater bandwidth.
# Note the whitespace arround the target definitions.

# Target[ezwf]: 2:public@wellfleetA + 1:public@wellfleetA
# * 4:public@ciscoF

##
## RouterUptime —————————————
##
#
# In cases where you calculate the used bandwidth from
# several interfaces you normaly don’t get the routeruptime
# and routername displayed on the web page.
# If this interface are on the same router and the uptime and
# name should be displayed nevertheless you have to specify
# its community and address again with the RouterUptime keyword.

# Target[kacisco]: 1:public@194.64.66.250 + 2:public@194.64.66.250
# RouterUptime[kacisco]: public@194.64.66.250

##
## MaxBytes ——————————————-
##

# How many bytes per second can this port carry. Since most
# links are rated in bits per second, you need to divide
# their maximum bandwidth (in bits) by eight (8) in order to get
# bytes per second. This is very important to make your
# unscaled graphs display realistic information.
# T1 = 193000, 56K = 7000, Ethernet = 1250000. The “MaxBytes”
# value will be used by mrtg to decide whether it got a
# valid response from the router. If a number higher than
# “MaxBytes” is returned, it is ignored. Also read the section
# on AbsMax for further info.

# MaxBytes[ezwf]: 1250000

##
## Title ———————————————–
##

# Title for the HTML page which gets generated for the graph.

# Title[ezwf]: Traffic Analysis for ETZ C 95.1

##
## PageTop ———————————————
##

# Things to add to the top of the generated HTML page. Note
# that you can have several lines of text as long as the
# first column is empty.
# Note that the continuation lines will all end up on the same
# line in the html page. If you want linebreaks in the generated
# html use the ‘\n’ sequence.

# PageTop[ezwf]: <H1>Traffic Analysis for ETZ C95.1</H1>
# Our Campus Backbone runs over an FDDI line\n
# with a maximum transfer rate of 12.5 Mega Bytes per
# Second.

##
## PageFoot ———————————————
##

# Things to add at the very end of the mrtg generated html page

# PageFoot[ezwf]: <HR size=2 noshade>This page is managed by Blubber

# ————————————————–
# Optional Target Configuration Tags
# ————————————————–

##
## AddHead —————————————–
##

# Use this tag like the PageTop header, but its contents
# will be added between </TITLE> and </HEAD>.

# AddHead[ezwf]: <!– Just a comment for fun –>

##
## AbsMax ——————————————
##

# If you are monitoring a link which can handle more traffic
# than the MaxBytes value. Eg, a line which uses compression
# or some frame relay link, you can use the AbsMax keyword
# to give the absolute maximum value ever to be reached. We
# need to know this in order to sort out unrealistic values
# returned by the routers. If you do not set absmax, rateup
# will ignore values higher then MaxBytes.

# AbsMax[ezwf]: 2500000

##
## Unscaled ——————————————
##

# By default each graph is scaled vertically to make the
# actual data visible even when it is much lower than
# MaxBytes. With the “Unscaled” variable you can suppress
# this. It’s argument is a string, containing one letter
# for each graph you don’t want to be scaled: d=day w=week
# m=month y=year. In the example I suppress scaling for the
# yearly and the monthly graph.

# Unscaled[ezwf]: ym

##
## WithPeak ——————————————
##

# By default the graphs only contain the average transfer
# rates for incoming and outgoing traffic. The
# following option instructs mrtg to display the peak
# 5 minute transfer rates in the [w]eekly, [m]onthly and
# [y]early graph. In the example we define the monthly
# and the yearly graph to contain peak as well as average
# values.

# WithPeak[ezwf]: ym

##
## Supress ——————————————
##

# By Default mrtg produces 4 graphs. With this option you
# can suppress the generation of selected graphs. The format
# is analog to the above option. In this example we suppress
# the yearly graph as it is quite empty in the beginning.

# Suppress[ezwf]: y

##
## Directory
##

# By default, mrtg puts all the files that it generates for each
# router (the GIFs, the HTML page, the log file, etc.) in WorkDir.
# If the “Directory” option is specified, the files are instead put
# into a directory under WorkDir. (For example, given the options in
# this mrtg.cfg-dist file, the “Directory” option below would cause all
# the ezwf files to be put into /usr/tardis/pub/www/stats/mrtg/ezwf .)
#
# The directory must already exist; mrtg will not create it.

# Directory[ezwf]: ezwf

##
## XSize and YSize ——————————————
##

# By Default mrtgs graphs are 100 by 400 pixels wide (plus
# some more for the labels. In the example we get almost
# square graphs …
# Note: XSize must be between 20 and 600
# YSize must be larger than 20

# XSize[ezwf]: 300
# YSize[ezwf]: 300

##
## XZoom YZoom ————————————————-
##

# If you want your graphs to have larger pixels, you can
# “Zoom” them.

#XZoom[ezwf]: 2.0
#YZoom[ezwf]: 2.0

##
## XScale YScale ————————————————-
##

# If you want your graphs to be actually scaled use XScale
# and YScale. (Beware while this works, the results look ugly
# (to be frank) so if someone wants fix this: patches are
# welcome.

# XScale[ezwf]: 1.5
# YScale[ezwf]: 1.5
##
## Step ———————————————————–
##

# Change the default step with from 5 * 60 seconds to
# something else I have not tested this well …

# Step[ezwf]: 60

##
## Options ——————————————
##

# The “Options” Keyword allows you to set some boolean
# switches:
#
# growright – The graph grows to the left by default.
#
# bits – All the numbers printed are in bits instead
# of bytes … looks much more impressive 🙂
#
# noinfo – Supress the information about uptime and
# device name in the generated webpage.
#
# absolute – This is for data sources which reset their
# value when they are read. This means that
# rateup has not to build the difference between
# this and the last value read from the data
# source. Useful for external data gatherers.
#
# gauge – Treat the values gathered from target as absolute
# and not as counters. This would be useful to
# monitor things like diskspace, load and so
# on ….
#
# nopercent Don’t print usage percentages
#
# integer Don’t print only integers in the summary …
#

# Options[ezwf]: growright, bits

##
## Colours ——————————————
##

# The “Colours” tag allows you to override the default colour
# scheme. Note: All 4 of the required colours must be
# specified here The colour name (‘Colourx’ below) is the
# legend name displayed, while the RGB value is the real
# colour used for the display, both on the graph and n the
# html doc.

# Format is: Colour1#RRGGBB,Colour2#RRGGBB,Colour3#RRGGBB,Colour4#RRGGBB
# where: Colour1 = Input on default graph
# Colour2 = Output on default graph
# Colour3 = Max input
# Colour4 = Max output
# RRGGBB = 2 digit hex values for Red, Green and Blue

# Colours[ezwf]: GREEN#00eb0c,BLUE#1000ff,DARK GREEN#006600,VIOLET#ff00ff

##
## Background ——————————————
##

# With the “Background” tag you can configure the background
# colour of the generated HTML page

# Background[ezwf]: #a0a0a0a

##
## YLegend, ShortLegend, Legend[1234] ——————
##

# The following keywords allow you to override the text
# displayed for the various legends of the graph and in the
# HTML document
#
# * YLegend : The Y-Axis of the graph
# * ShortLegend: The ‘b/s’ string used for Max, Average and Current
# * Legend[1234IO]: The strings for the colour legend
#
#YLegend[ezwf]: Bits per Second
#ShortLegend[ezwf]: b/s
#Legend1[ezwf]: Incoming Traffic in Bits per Second
#Legend2[ezwf]: Outgoing Traffic in Bits per Second
#Legend3[ezwf]: Maximal 5 Minute Incoming Traffic
#Legend4[ezwf]: Maximal 5 Minute Outgoing Traffic
#LegendI[ezwf]: &nbsp;In:
#LegendO[ezwf]: &nbsp;Out:
# Note, if LegendI or LegendO are set to an empty string with
# LegendO[ezwf]:
# The corresponding line below the graph will not be printed at all.

# If you live in an international world, you might want to
# generate the graphs in different timezones. This is set in the
# TZ variable. Under certain operating systems like Solaris,
# this will provoke the localtime call to giv the time in
# the selected timezone …

# Timezone[ezwf]: Japan

# The Timezone is the standard Solaris timezone, ie Japan, Hongkong,
# GMT, GMT+1 etc etc.

# By default, mrtg (actually rateup) uses the strftime(3) ‘%W’ option
# to format week numbers in the monthly graphs. The exact semantics
# of this format option vary between systems. If you find that the
# week numbers are wrong, and your system’s strftime(3) routine
# supports it, you can try another format option. The POSIX ‘%V’
# option seems to correspond to a widely used week numbering
# convention. The week format character should be specified as a
# single letter; either W, V, or U.

# Weekformat[ezwf]: V

# #############################
# Two very special Target names
# #############################

# To save yourself some typing you can define a target
# called ‘^’. The text of every Keyword you define for this
# target will be PREPENDED to the corresponding Keyword of
# all the targets defined below this line. The same goes for
# a Target called ‘$’ but its options will be APPENDED.
#
# The example will make mrtg use a common header and a
# common contact person in all the pages generated from
# targets defined later in this file.
#
#PageTop[^]: <H1>Traffic Stats</H1><HR>
#PageTop[$]: Contact Peter Norton if you have any questions<HR>

PageFoot[^]: <i>Page managed by GeekGuy</a></i>

Target[cacheServerRequests]: cacheServerRequests&cacheServerRequests:public@shadow:3401
MaxBytes[cacheServerRequests]: 10000000
Title[cacheServerRequests]: Server Requests @ shadow
Options[cacheServerRequests]: growright, nopercent
PageTop[cacheServerRequests]: <h1>Server Requests @ shadow</h1>
YLegend[cacheServerRequests]: requests/sec
ShortLegend[cacheServerRequests]: req/s
LegendI[cacheServerRequests]: Requests&nbsp;
LegendO[cacheServerRequests]:
Legend1[cacheServerRequests]: Requests
Legend2[cacheServerRequests]:

Target[cacheServerErrors]: cacheServerErrors&cacheServerErrors:public@shadow:3401
MaxBytes[cacheServerErrors]: 10000000
Title[cacheServerErrors]: Server Errors @ shadow
Options[cacheServerErrors]: growright, nopercent
PageTop[cacheServerErrors]: <H1>Server Errors @ shadow</H1>
YLegend[cacheServerErrors]: errors/sec
ShortLegend[cacheServerErrors]: err/s
LegendI[cacheServerErrors]: Errors&nbsp;
LegendO[cacheServerErrors]:
Legend1[cacheServerErrors]: Errors
Legend2[cacheServerErrors]:

Target[cacheServerInOutKb]: cacheServerInKb&cacheServerOutKb:public@shadow:3401 * 1024
MaxBytes[cacheServerInOutKb]: 1000000000
Title[cacheServerInOutKb]: Server In/Out Traffic @ shadow
Options[cacheServerInOutKb]: growright, nopercent
PageTop[cacheServerInOutKb]: <H1>Server In/Out Traffic @ shadow</H1>
YLegend[cacheServerInOutKb]: Bytes/sec
ShortLegend[cacheServerInOutKb]: Bytes/s
LegendI[cacheServerInOutKb]: Server In&nbsp;
LegendO[cacheServerInOutKb]: Server Out&nbsp;
Legend1[cacheServerInOutKb]: Server In
Legend2[cacheServerInOutKb]: Server Out

Target[cacheClientHttpRequests]: cacheClientHttpRequests&cacheClientHttpRequests:public@shadow:3401
MaxBytes[cacheClientHttpRequests]: 10000000
Title[cacheClientHttpRequests]: Client Http Requests @ shadow
Options[cacheClientHttpRequests]: growright, nopercent
PageTop[cacheClientHttpRequests]: <H1>Client Http Requests @ shadow</H1>
YLegend[cacheClientHttpRequests]: requests/sec
ShortLegend[cacheClientHttpRequests]: req/s
LegendI[cacheClientHttpRequests]: Requests&nbsp;
LegendO[cacheClientHttpRequests]:
Legend1[cacheClientHttpRequests]: Requests
Legend2[cacheClientHttpRequests]:

Target[cacheHttpHits]: cacheHttpHits&cacheHttpHits:public@shadow:3401
MaxBytes[cacheHttpHits]: 10000000
Title[cacheHttpHits]: HTTP Hits @ shadow
Options[cacheHttpHits]: growright, nopercent
PageTop[cacheHttpHits]: <H1>HTTP Hits @ shadow</H1>
YLegend[cacheHttpHits]: hits/sec
ShortLegend[cacheHttpHits]: hits/s
LegendI[cacheHttpHits]: Hits&nbsp;
LegendO[cacheHttpHits]:
Legend1[cacheHttpHits]: Hits
Legend2[cacheHttpHits]:

Target[cacheHttpErrors]: cacheHttpErrors&cacheHttpErrors:public@shadow:3401
MaxBytes[cacheHttpErrors]: 10000000
Title[cacheHttpErrors]: HTTP Errors @ shadow
Options[cacheHttpErrors]: growright, nopercent
PageTop[cacheHttpErrors]: <H1>HTTP Errors @ shadow</H1>
YLegend[cacheHttpErrors]: errors/sec
ShortLegend[cacheHttpErrors]: err/s
LegendI[cacheHttpErrors]: Errors&nbsp;
LegendO[cacheHttpErrors]:
Legend1[cacheHttpErrors]: Errors
Legend2[cacheHttpErrors]:

Target[cacheIcpPktsSentRecv]: cacheIcpPktsSent&cacheIcpPktsRecv:public@shadow:3401
MaxBytes[cacheIcpPktsSentRecv]: 10000000
Title[cacheIcpPktsSentRecv]: ICP Packets Sent/Received
Options[cacheIcpPktsSentRecv]: growright, nopercent
PageTop[cacheIcpPktsSentRecv]: <H1>ICP Packets Sent/Recieved @ shadow</H1>
YLegend[cacheIcpPktsSentRecv]: packets/sec
ShortLegend[cacheIcpPktsSentRecv]: pkts/s
LegendI[cacheIcpPktsSentRecv]: Pkts Sent&nbsp;
LegendO[cacheIcpPktsSentRecv]: Pkts Received&nbsp;
Legend1[cacheIcpPktsSentRecv]: Pkts Sent
Legend2[cacheIcpPktsSentRecv]: Pkts Received

Target[cacheIcpKbSentRecv]: cacheIcpKbSent&cacheIcpKbRecv:public@shadow:3401 * 1024
MaxBytes[cacheIcpKbSentRecv]: 1000000000
Title[cacheIcpKbSentRecv]: ICP Bytes Sent/Received
Options[cacheIcpKbSentRecv]: growright, nopercent
PageTop[cacheIcpKbSentRecv]: <H1>ICP Bytes Sent/Received @ shadow</H1>
YLegend[cacheIcpKbSentRecv]: Bytes/sec
ShortLegend[cacheIcpKbSentRecv]: Bytes/s
LegendI[cacheIcpKbSentRecv]: Sent&nbsp;
LegendO[cacheIcpKbSentRecv]: Received&nbsp;
Legend1[cacheIcpKbSentRecv]: Sent
Legend2[cacheIcpKbSentRecv]: Received

Target[cacheHttpInOutKb]: cacheHttpInKb&cacheHttpOutKb:public@shadow:3401 * 1024
MaxBytes[cacheHttpInOutKb]: 1000000000
Title[cacheHttpInOutKb]: HTTP In/Out Traffic @ shadow
Options[cacheHttpInOutKb]: growright, nopercent
PageTop[cacheHttpInOutKb]: <H1>HTTP In/Out Traffic @ shadow</H1>
YLegend[cacheHttpInOutKb]: Bytes/second
ShortLegend[cacheHttpInOutKb]: Bytes/s
LegendI[cacheHttpInOutKb]: HTTP In&nbsp;
LegendO[cacheHttpInOutKb]: HTTP Out&nbsp;
Legend1[cacheHttpInOutKb]: HTTP In
Legend2[cacheHttpInOutKb]: HTTP Out

Target[cacheCurrentSwapSize]: cacheCurrentSwapSize&cacheCurrentSwapSize:public@shadow:3401
MaxBytes[cacheCurrentSwapSize]: 1000000000
Title[cacheCurrentSwapSize]: Current Swap Size @ shadow
Options[cacheCurrentSwapSize]: gauge, growright, nopercent
PageTop[cacheCurrentSwapSize]: <H1>Current Swap Size @ shadow</H1>
YLegend[cacheCurrentSwapSize]: swap size
ShortLegend[cacheCurrentSwapSize]: Bytes
LegendI[cacheCurrentSwapSize]: Swap Size&nbsp;
LegendO[cacheCurrentSwapSize]:
Legend1[cacheCurrentSwapSize]: Swap Size
Legend2[cacheCurrentSwapSize]:

Target[cacheNumObjCount]: cacheNumObjCount&cacheNumObjCount:public@shadow:3401
MaxBytes[cacheNumObjCount]: 10000000
Title[cacheNumObjCount]: Num Object Count @ shadow
Options[cacheNumObjCount]: gauge, growright, nopercent
PageTop[cacheNumObjCount]: <H1>Num Object Count @ shadow</H1>
YLegend[cacheNumObjCount]: # of objects
ShortLegend[cacheNumObjCount]: objects
LegendI[cacheNumObjCount]: Num Objects&nbsp;
LegendO[cacheNumObjCount]:
Legend1[cacheNumObjCount]: Num Objects
Legend2[cacheNumObjCount]:

Target[cacheCpuUsage]: cacheCpuUsage&cacheCpuUsage:public@shadow:3401
MaxBytes[cacheCpuUsage]: 100
AbsMax[cacheCpuUsage]: 100
Title[cacheCpuUsage]: CPU Usage @ shadow
Options[cacheCpuUsage]: absolute, gauge, noinfo, growright, nopercent
Unscaled[cacheCpuUsage]: dwmy
PageTop[cacheCpuUsage]: <H1>CPU Usage @ shadow</H1>
YLegend[cacheCpuUsage]: usage %
ShortLegend[cacheCpuUsage]:%
LegendI[cacheCpuUsage]: CPU Usage&nbsp;
LegendO[cacheCpuUsage]:
Legend1[cacheCpuUsage]: CPU Usage
Legend2[cacheCpuUsage]:

Target[cacheMemUsage]: cacheMemUsage&cacheMemUsage:public@shadow:3401 * 1024
MaxBytes[cacheMemUsage]: 2000000000
Title[cacheMemUsage]: Memory Usage
Options[cacheMemUsage]: gauge, growright, nopercent
PageTop[cacheMemUsage]: <H1>Total memory accounted for @ shadow</H1>
YLegend[cacheMemUsage]: Bytes
ShortLegend[cacheMemUsage]: Bytes
LegendI[cacheMemUsage]: Mem Usage&nbsp;
LegendO[cacheMemUsage]:
Legend1[cacheMemUsage]: Mem Usage
Legend2[cacheMemUsage]:

Target[cacheSysPageFaults]: cacheSysPageFaults&cacheSysPageFaults:public@shadow:3401
MaxBytes[cacheSysPageFaults]: 10000000
Title[cacheSysPageFaults]: Sys Page Faults @ shadow
Options[cacheSysPageFaults]: growright, nopercent
PageTop[cacheSysPageFaults]: <H1>Sys Page Faults @ shadow</H1>
YLegend[cacheSysPageFaults]: page faults/sec
ShortLegend[cacheSysPageFaults]: PF/s
LegendI[cacheSysPageFaults]: Page Faults&nbsp;
LegendO[cacheSysPageFaults]:
Legend1[cacheSysPageFaults]: Page Faults
Legend2[cacheSysPageFaults]:

Target[cacheSysVMsize]: cacheSysVMsize&cacheSysVMsize:public@shadow:3401 * 1024
MaxBytes[cacheSysVMsize]: 1000000000
Title[cacheSysVMsize]: Storage Mem Size @ shadow
Options[cacheSysVMsize]: gauge, growright, nopercent
PageTop[cacheSysVMsize]: <H1>Storage Mem Size @ shadow</H1>
YLegend[cacheSysVMsize]: mem size
ShortLegend[cacheSysVMsize]: Bytes
LegendI[cacheSysVMsize]: Mem Size&nbsp;
LegendO[cacheSysVMsize]:
Legend1[cacheSysVMsize]: Mem Size
Legend2[cacheSysVMsize]:

Target[cacheSysStorage]: cacheSysStorage&cacheSysStorage:public@shadow:3401
MaxBytes[cacheSysStorage]: 1000000000
Title[cacheSysStorage]: Storage Swap Size @ shadow
Options[cacheSysStorage]: gauge, growright, nopercent
PageTop[cacheSysStorage]: <H1>Storage Swap Size @ shadow</H1>
YLegend[cacheSysStorage]: swap size (KB)
ShortLegend[cacheSysStorage]: KBytes
LegendI[cacheSysStorage]: Swap Size&nbsp;
LegendO[cacheSysStorage]:
Legend1[cacheSysStorage]: Swap Size
Legend2[cacheSysStorage]:

Target[cacheSysNumReads]: cacheSysNumReads&cacheSysNumReads:public@shadow:3401
MaxBytes[cacheSysNumReads]: 10000000
Title[cacheSysNumReads]: HTTP I/O number of reads @ shadow
Options[cacheSysNumReads]: growright, nopercent
PageTop[cacheSysNumReads]: <H1>HTTP I/O number of reads @ shadow</H1>
YLegend[cacheSysNumReads]: reads/sec
ShortLegend[cacheSysNumReads]: reads/s
LegendI[cacheSysNumReads]: I/O&nbsp;
LegendO[cacheSysNumReads]:
Legend1[cacheSysNumReads]: I/O
Legend2[cacheSysNumReads]:

Target[cacheCpuTime]: cacheCpuTime&cacheCpuTime:public@shadow:3401
MaxBytes[cacheCpuTime]: 1000000000
Title[cacheCpuTime]: Cpu Time
Options[cacheCpuTime]: gauge, growright, nopercent
PageTop[cacheCpuTime]: <H1>Amount of cpu seconds consumed @ shadow</H1>
YLegend[cacheCpuTime]: cpu seconds
ShortLegend[cacheCpuTime]: cpu seconds
LegendI[cacheCpuTime]: Mem Time&nbsp;
LegendO[cacheCpuTime]:
Legend1[cacheCpuTime]: Mem Time
Legend2[cacheCpuTime]:

Target[cacheMaxResSize]: cacheMaxResSize&cacheMaxResSize:public@shadow:3401 * 1024
MaxBytes[cacheMaxResSize]: 1000000000
Title[cacheMaxResSize]: Max Resident Size
Options[cacheMaxResSize]: gauge, growright, nopercent
PageTop[cacheMaxResSize]: <H1>Maximum Resident Size @ shadow</H1>
YLegend[cacheMaxResSize]: Bytes
ShortLegend[cacheMaxResSize]: Bytes
LegendI[cacheMaxResSize]: Size&nbsp;
LegendO[cacheMaxResSize]:
Legend1[cacheMaxResSize]: Size
Legend2[cacheMaxResSize]:

Target[cacheCurrentLRUExpiration]: cacheCurrentLRUExpiration&cacheCurrentLRUExpiration:public@shadow:3401
MaxBytes[cacheCurrentLRUExpiration]: 1000000000
Title[cacheCurrentLRUExpiration]: LRU Expiration Age
Options[cacheCurrentLRUExpiration]: gauge, growright, nopercent
PageTop[cacheCurrentLRUExpiration]: <H1>Storage LRU Expiration Age @ shadow</H1>
YLegend[cacheCurrentLRUExpiration]: expir (days)
ShortLegend[cacheCurrentLRUExpiration]: days
LegendI[cacheCurrentLRUExpiration]: Age&nbsp;
LegendO[cacheCurrentLRUExpiration]:
Legend1[cacheCurrentLRUExpiration]: Age
Legend2[cacheCurrentLRUExpiration]:

Target[cacheCurrentUnlinkRequests]: cacheCurrentUnlinkRequests&cacheCurrentUnlinkRequests:public@shadow:3401
MaxBytes[cacheCurrentUnlinkRequests]: 1000000000
Title[cacheCurrentUnlinkRequests]: Unlinkd Requests
Options[cacheCurrentUnlinkRequests]: growright, nopercent
PageTop[cacheCurrentUnlinkRequests]: <H1>Requests given to unlinkd @ shadow</H1>
YLegend[cacheCurrentUnlinkRequests]: requests/sec
ShortLegend[cacheCurrentUnlinkRequests]: reqs/s
LegendI[cacheCurrentUnlinkRequests]: Unlinkd requests&nbsp;
LegendO[cacheCurrentUnlinkRequests]:
Legend1[cacheCurrentUnlinkRequests]: Unlinkd requests
Legend2[cacheCurrentUnlinkRequests]:

Target[cacheCurrentUnusedFileDescrCount]: cacheCurrentUnusedFileDescrCount&cacheCurrentUnusedFileDescrCount:public@shadow:3401
MaxBytes[cacheCurrentUnusedFileDescrCount]: 1000000000
Title[cacheCurrentUnusedFileDescrCount]: Available File Descriptors
Options[cacheCurrentUnusedFileDescrCount]: gauge, growright, nopercent
PageTop[cacheCurrentUnusedFileDescrCount]: <H1>Available number of file descriptors @ shadow</H1>
YLegend[cacheCurrentUnusedFileDescrCount]: # of FDs
ShortLegend[cacheCurrentUnusedFileDescrCount]: FDs
LegendI[cacheCurrentUnusedFileDescrCount]: File Descriptors&nbsp;
LegendO[cacheCurrentUnusedFileDescrCount]:
Legend1[cacheCurrentUnusedFileDescrCount]: File Descriptors
Legend2[cacheCurrentUnusedFileDescrCount]:

Target[cacheCurrentReservedFileDescrCount]: cacheCurrentReservedFileDescrCount&cacheCurrentReservedFileDescrCount:public@shadow:3401
MaxBytes[cacheCurrentReservedFileDescrCount]: 1000000000
Title[cacheCurrentReservedFileDescrCount]: Reserved File Descriptors
Options[cacheCurrentReservedFileDescrCount]: gauge, growright, nopercent
PageTop[cacheCurrentReservedFileDescrCount]: <H1>Reserved number of file descriptors @ shadow</H1>
YLegend[cacheCurrentReservedFileDescrCount]: # of FDs
ShortLegend[cacheCurrentReservedFileDescrCount]: FDs
LegendI[cacheCurrentReservedFileDescrCount]: File Descriptors&nbsp;
LegendO[cacheCurrentReservedFileDescrCount]:
Legend1[cacheCurrentReservedFileDescrCount]: File Descriptors
Legend2[cacheCurrentReservedFileDescrCount]:

Target[cacheClients]: cacheClients&cacheClients:public@shadow:3401
MaxBytes[cacheClients]: 1000000000
Title[cacheClients]: Number of Clients
Options[cacheClients]: gauge, growright, nopercent
PageTop[cacheClients]: <H1>Number of clients accessing cache @ shadow</H1>
YLegend[cacheClients]: clients/sec
ShortLegend[cacheClients]: clients/s
LegendI[cacheClients]: Num Clients&nbsp;
LegendO[cacheClients]:
Legend1[cacheClients]: Num Clients
Legend2[cacheClients]:

Target[cacheHttpAllSvcTime]: cacheHttpAllSvcTime.5&cacheHttpAllSvcTime.60:public@shadow:3401
MaxBytes[cacheHttpAllSvcTime]: 1000000000
Title[cacheHttpAllSvcTime]: HTTP All Service Time
Options[cacheHttpAllSvcTime]: gauge, growright, nopercent
PageTop[cacheHttpAllSvcTime]: <H1>HTTP all service time @ shadow</H1>
YLegend[cacheHttpAllSvcTime]: svc time (ms)
ShortLegend[cacheHttpAllSvcTime]: ms
LegendI[cacheHttpAllSvcTime]: Median Svc Time (5min)&nbsp;
LegendO[cacheHttpAllSvcTime]: Median Svc Time (60min)&nbsp;
Legend1[cacheHttpAllSvcTime]: Median Svc Time
Legend2[cacheHttpAllSvcTime]: Median Svc Time

Target[cacheHttpMissSvcTime]: cacheHttpMissSvcTime.5&cacheHttpMissSvcTime.60:public@shadow:3401
MaxBytes[cacheHttpMissSvcTime]: 1000000000
Title[cacheHttpMissSvcTime]: HTTP Miss Service Time
Options[cacheHttpMissSvcTime]: gauge, growright, nopercent
PageTop[cacheHttpMissSvcTime]: <H1>HTTP miss service time @ shadow</H1>
YLegend[cacheHttpMissSvcTime]: svc time (ms)
ShortLegend[cacheHttpMissSvcTime]: ms
LegendI[cacheHttpMissSvcTime]: Median Svc Time (5min)&nbsp;
LegendO[cacheHttpMissSvcTime]: Median Svc Time (60min)&nbsp;
Legend1[cacheHttpMissSvcTime]: Median Svc Time
Legend2[cacheHttpMissSvcTime]: Median Svc Time

Target[cacheHttpNmSvcTime]: cacheHttpNmSvcTime.5&cacheHttpNmSvcTime.60:public@shadow:3401
MaxBytes[cacheHttpNmSvcTime]: 1000000000
Title[cacheHttpNmSvcTime]: HTTP Near Miss Service Time
Options[cacheHttpNmSvcTime]: gauge, growright, nopercent
PageTop[cacheHttpNmSvcTime]: <H1>HTTP near miss service time @ shadow</H1>
YLegend[cacheHttpNmSvcTime]: svc time (ms)
ShortLegend[cacheHttpNmSvcTime]: ms
LegendI[cacheHttpNmSvcTime]: Median Svc Time (5min)&nbsp;
LegendO[cacheHttpNmSvcTime]: Median Svc Time (60min)&nbsp;
Legend1[cacheHttpNmSvcTime]: Median Svc Time
Legend2[cacheHttpNmSvcTime]: Median Svc Time

Target[cacheHttpHitSvcTime]: cacheHttpHitSvcTime.5&cacheHttpHitSvcTime.60:public@shadow:3401
MaxBytes[cacheHttpHitSvcTime]: 1000000000
Title[cacheHttpHitSvcTime]: HTTP Hit Service Time
Options[cacheHttpHitSvcTime]: gauge, growright, nopercent
PageTop[cacheHttpHitSvcTime]: <H1>HTTP hit service time @ shadow</H1>
YLegend[cacheHttpHitSvcTime]: svc time (ms)
ShortLegend[cacheHttpHitSvcTime]: ms
LegendI[cacheHttpHitSvcTime]: Median Svc Time (5min)&nbsp;
LegendO[cacheHttpHitSvcTime]: Median Svc Time (60min)&nbsp;
Legend1[cacheHttpHitSvcTime]: Median Svc Time
Legend2[cacheHttpHitSvcTime]: Median Svc Time

Target[cacheIcpQuerySvcTime]: cacheIcpQuerySvcTime.5&cacheIcpQuerySvcTime.60:public@shadow:3401
MaxBytes[cacheIcpQuerySvcTime]: 1000000000
Title[cacheIcpQuerySvcTime]: ICP Query Service Time
Options[cacheIcpQuerySvcTime]: gauge, growright, nopercent
PageTop[cacheIcpQuerySvcTime]: <H1>ICP query service time @ shadow</H1>
YLegend[cacheIcpQuerySvcTime]: svc time (ms)
ShortLegend[cacheIcpQuerySvcTime]: ms
LegendI[cacheIcpQuerySvcTime]: Median Svc Time (5min)&nbsp;
LegendO[cacheIcpQuerySvcTime]: Median Svc Time (60min)&nbsp;
Legend1[cacheIcpQuerySvcTime]: Median Svc Time
Legend2[cacheIcpQuerySvcTime]: Median Svc Time

Target[cacheIcpReplySvcTime]: cacheIcpReplySvcTime.5&cacheIcpReplySvcTime.60:public@shadow:3401
MaxBytes[cacheIcpReplySvcTime]: 1000000000
Title[cacheIcpReplySvcTime]: ICP Reply Service Time
Options[cacheIcpReplySvcTime]: gauge, growright, nopercent
PageTop[cacheIcpReplySvcTime]: <H1>ICP reply service time @ shadow</H1>
YLegend[cacheIcpReplySvcTime]: svc time (ms)
ShortLegend[cacheIcpReplySvcTime]: ms
LegendI[cacheIcpReplySvcTime]: Median Svc Time (5min)&nbsp;
LegendO[cacheIcpReplySvcTime]: Median Svc Time (60min)&nbsp;
Legend1[cacheIcpReplySvcTime]: Median Svc Time
Legend2[cacheIcpReplySvcTime]: Median Svc Time

Target[cacheDnsSvcTime]: cacheDnsSvcTime.5&cacheDnsSvcTime.60:public@shadow:3401
MaxBytes[cacheDnsSvcTime]: 1000000000
Title[cacheDnsSvcTime]: DNS Service Time
Options[cacheDnsSvcTime]: gauge, growright, nopercent
PageTop[cacheDnsSvcTime]: <H1>DNS service time @ shadow</H1>
YLegend[cacheDnsSvcTime]: svc time (ms)
ShortLegend[cacheDnsSvcTime]: ms
LegendI[cacheDnsSvcTime]: Median Svc Time (5min)&nbsp;
LegendO[cacheDnsSvcTime]: Median Svc Time (60min)&nbsp;
Legend1[cacheDnsSvcTime]: Median Svc Time
Legend2[cacheDnsSvcTime]: Median Svc Time

Target[cacheRequestHitRatio]: cacheRequestHitRatio.5&cacheRequestHitRatio.60:public@shadow:3401
MaxBytes[cacheRequestHitRatio]: 100
AbsMax[cacheRequestHitRatio]: 100
Title[cacheRequestHitRatio]: Request Hit Ratio @ shadow
Options[cacheRequestHitRatio]: absolute, gauge, noinfo, growright, nopercent
Unscaled[cacheRequestHitRatio]: dwmy
PageTop[cacheRequestHitRatio]: <H1>Request Hit Ratio @ shadow</H1>
YLegend[cacheRequestHitRatio]: %
ShortLegend[cacheRequestHitRatio]: %
LegendI[cacheRequestHitRatio]: Median Hit Ratio (5min)&nbsp;
LegendO[cacheRequestHitRatio]: Median Hit Ratio (60min)&nbsp;
Legend1[cacheRequestHitRatio]: Median Hit Ratio
Legend2[cacheRequestHitRatio]: Median Hit Ratio

Target[cacheRequestByteRatio]: cacheRequestByteRatio.5&cacheRequestByteRatio.60:public@shadow:3401
MaxBytes[cacheRequestByteRatio]: 100
AbsMax[cacheRequestByteRatio]: 100
Title[cacheRequestByteRatio]: Byte Hit Ratio @ shadow
Options[cacheRequestByteRatio]: absolute, gauge, noinfo, growright, nopercent
Unscaled[cacheRequestByteRatio]: dwmy
PageTop[cacheRequestByteRatio]: <H1>Byte Hit Ratio @ shadow</H1>
YLegend[cacheRequestByteRatio]: %
ShortLegend[cacheRequestByteRatio]:%
LegendI[cacheRequestByteRatio]: Median Hit Ratio (5min)&nbsp;
LegendO[cacheRequestByteRatio]: Median Hit Ratio (60min)&nbsp;
Legend1[cacheRequestByteRatio]: Median Hit Ratio
Legend2[cacheRequestByteRatio]: Median Hit Ratio

Target[cacheBlockingGetHostByAddr]: cacheBlockingGetHostByAddr&cacheBlockingGetHostByAddr:public@shadow:3401
MaxBytes[cacheBlockingGetHostByAddr]: 1000000000
Title[cacheBlockingGetHostByAddr]: Blocking gethostbyaddr
Options[cacheBlockingGetHostByAddr]: growright, nopercent
PageTop[cacheBlockingGetHostByAddr]: <H1>Blocking gethostbyaddr count @ shadow</H1>
YLegend[cacheBlockingGetHostByAddr]: blocks/sec
ShortLegend[cacheBlockingGetHostByAddr]: blocks/s
LegendI[cacheBlockingGetHostByAddr]: Blocking&nbsp;
LegendO[cacheBlockingGetHostByAddr]:
Legend1[cacheBlockingGetHostByAddr]: Blocking
Legend2[cacheBlockingGetHostByAddr]:


Facebooktwittergoogle_plusredditpinterestlinkedinmail